Homework 7: Solutions to exercises not appearing in Pressley

Math 120A

- (4.5.3) Recall we have an atlas for the sphere S^{2} consisting of $\sigma_{1}: U_{1} \rightarrow S^{2}$ and $\sigma_{2}: U_{2} \rightarrow S^{2}$ where $U_{1}=U_{2}=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(0,2 \pi)$ with

$$
\begin{aligned}
& \sigma_{1}(\theta, \phi)=(\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta) \\
& \sigma_{2}(\theta, \phi)=(-\cos \theta \cos \phi,-\sin \theta,-\cos \theta \sin \phi)
\end{aligned}
$$

For σ_{1}, we have the partial derivatives

$$
\begin{aligned}
& \left(\sigma_{1}\right)_{\theta}=(-\sin \theta \cos \phi,-\sin \theta \sin \phi, \cos \theta) \\
& \left(\sigma_{1}\right)_{\phi}=(-\cos \theta \sin \phi, \cos \theta \cos \phi, 0)
\end{aligned}
$$

with cross product $\left(\sigma_{1}\right)_{\theta} \times\left(\sigma_{1}\right)_{\phi}=\left(-\cos ^{2} \theta \cos \phi,-\cos ^{2} \theta \sin \phi,-\cos \theta \sin \theta\right)=-\cos \theta \sigma(\theta, \phi)$. Since $\cos \theta$ is a positive number on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, this vector points in the opposite direction as $\sigma(\theta, \phi)$, and in particular points inward toward the origin on the unit sphere. Therefore so does the standard unit normal. The computation for σ_{2} is extremely similar.

- Question 3. For the first part, suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at x. Then let

$$
\epsilon(h)=\frac{|h|}{h}\left[\frac{f(x+h)-f(x)}{h}\right]
$$

Then $\epsilon(h) \rightarrow 0$ as $h \rightarrow 0$, and we have

$$
f(x+h)=f(x)+f^{\prime}(x)(h)+|h| \epsilon(h)
$$

Therefore f satisfies the new definition with $T_{\mathbf{p}}(h)=f^{\prime}(x) h$.
For the second part, let $f: \mathbb{R}^{n} \rightarrow R^{m}$ have component functions $f_{i}\left(x_{1}, \cdots, x_{n}\right)$ for $i=1, \cdots m$. Assume f is differentiable at \mathbf{p} and let $\mathbf{v}=h \mathbf{e}_{j}$ for some $h>0$ and \mathbf{e}_{j} the j th standard basis vector. Then we have

$$
f\left(\mathbf{p}+h \mathbf{e}_{j}\right)=f(\mathbf{p})+T_{\mathbf{p}}\left(h \mathbf{e}_{j}\right)+|h| \epsilon\left(h \mathbf{e}_{j}\right)
$$

Rearranging and recalling that $T_{\mathbf{p}}$ is linear shows that

$$
\lim _{h \rightarrow 0} \frac{f\left(\mathbf{p}+h \mathbf{e}_{j}\right)-f(\mathbf{p}}{h}=T_{\mathbf{p}}\left(\mathbf{e}_{j}\right)
$$

Breaking the right side up into coordinates shows that

$$
\begin{aligned}
T_{\mathbf{p}}\left(\mathbf{e}_{j}\right) & =\left(\lim _{h \rightarrow 0}\left(\frac{f_{1}\left(\mathbf{p}+h \mathbf{e}_{j}\right)-f_{1}(\mathbf{p}}{h}, \cdots, \frac{f_{m}\left(\mathbf{p}+h \mathbf{e}_{j}\right)-f_{m}(\mathbf{p}}{h}\right)\right. \\
& =\left(\frac{\partial f_{1}}{\partial x_{j}}(\mathbf{p}), \cdots, \frac{\partial f_{m}}{\partial x_{j}}(\mathbf{p})\right)
\end{aligned}
$$

Since $T_{\mathbf{p}}\left(\mathbf{e}_{j}\right)$ is the j th column of the matrix of $T_{\mathbf{p}}$ with respect to the standard bases for \mathbb{R}^{n} and \mathbb{R}^{m}, we conclude this matrix is the Jacobian of f.

For the last part, we see that the function in the last problem of HW 1 has partial derivatives (and therefore a Jacobian) at (0,0), but is not continuous at $(0,0)$, and therefore by the proposition not differentiable at $(0,0)$ either.

